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ABSTRACT 

 Game Theory can be applied to the field of Biology, especially evolution. In the early seventies, 

Game Theory, which was centered on the concept of a rational individual, was modified and 

enriched to be applied to a wide range of biological problems. In classical Game Theory, 

individuals could choose their strategies out of a certain set and could change them in repeated 

games. However, evolutionary Game Theory deals with entire populations whose members have 

fixed strategies - for instance, a type of behavior. A change of strategy is not a decision of a 

certain player but the replacement of certain individuals by their offspring. In this kind of games, 

what a player does depends on what everybody else is doing and that’s why they are called 

frequency dependent games. Here it is not one species evolving against another, but the members 

of a certain species evolving against one another. 
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INTRODUCTION 

A game, in Game Theory, is a tool that can model any situation in which there are people that 

interact - taking decisions, making moves, etc - in order to attain a certain goal. This 

mathematical description of conflicts began in the twentieth century thanks to the work of John 

Von Neumann, Oskar Morgenstern and John Nash and one of its first motivations was to help 

military officers design optimal war strategies. Nowadays, however, Game Theory is applied to a 

wide range of disciplines, like Biology or Political Science, but above all, to Economy. 

Interestingly, eleven game-theorists have won the Economics Nobel Prize up to date but never 

has a Fields Medal been awarded to an expert in this field. This shows to what great extent Game 

Theory is important for Economy and at the same time how mathematicians regard it as a 

secondary discipline compared to other areas of Mathematics. This undergraduate thesis clearly 

falls under the category of applied mathematics or mathematical modeling and therefore its goal 

is far from just accurately proving a series of theorems. Instead, even if the foundations of Game 

Theory will be laid, I will focus on showing how Game Theory can be applied to solve a great 

number of different problems, like, for example, the emergence of cooperative dispositions 

towards strangers. Bearing this in mind, I will begin this undergraduate thesis by analyzing a 

military conflict between two countries whose officials will have a symbolic name: Nash and 

Neumann. To so do, I warn the reader that I will informally explain and use certain results that 

will be accurately justified later in this paper 
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A First Example  

Suppose that a country A and a country B are at war and that the generals of each army are 

called, respectively, John Nash and John Von Neumann. Every single day, Nash will send a 

heavily armed bomber and a smaller support plane to attack B. To do so, he will put a bomb in 

one of the two aircrafts. At the same time, Neumann knows Nash’s intentions and decides to 

embark on military action but judges unnecessary to attack the two planes, mainly for economic 

reasons. The bomber will survive 60% of the times it suffers an attack and, if it manages to live 

through the raid, it will always hit the target. The lighter plane, which is not as precise, hits the 

target 70% of the times and plus only survives Neumann’s attack half of the times. There are 

clearly only four possible results, which come from the combination of Nash choice to put the 

bomb either in the bomber or in the support plane, and Neumann’s call to attack one or the other 

aircraft. Nash feels that he gains when he hits the target and he does not care about suffering an 

attack on one of his planes. At the same time, Neumann desperately wants to protect his citizens 

and therefore he will lose utility when an attack is carried out. Nash’s gain for every possible 

combination of strtegies is 

 

  Bomber attacked Support attacked 

Bomb in bomber 0.6 × 1 = 0.6 1 

Bomb in support 0 0, 5 × 0.7 = 0.35 

 

 Bomber attacked Support attacked Bomb in bomber 0.6 × 1 = 0.6 1 Bomb in support 0.7 0, 5 × 

0.7 = 0.35 Table 1.1. Nash’s Payoff where we have assumed an increase in a unit of his utility 

comes from a successful attack. In an isolated realization of the game, the target can only either 

be or not be hit, so what do the numbers in the matrix represent, Clearly, the expected values of 

the outcome of the game when those strategies are employed. Given that this game is repeated 

every day, the Law of Large Numbers guarantees that the average outcome of the confrontation 

of two strategies (let’s say for example "Bomb in bomber" against "Bomber attacked") will tend 

to its expected value (for the aforementioned strategies, 0.6). Therefore, the following will be a 

good long-term analysis. Bear in mind that we should give the utility of both players, but here 

Neumann’s utility has implicitly been given as it will be the matrix on top with a minus sign in 

front of all entries.  

These facts could determine their strategies. If that was the case, the game would unfold as a 

constant 0.6 gain for Nash. However, instead of always putting the bomb in the bomber, Nash 

decides, every now and then, to bluff and to put the bomb in the support plane. How often should 

he do that Which is the best percentage of success he can get? How should Neumann adapt to 

this change? Let’s give an answer to all this questions. Given that Nash will no longer stick to 

one of the strategies but combine them, he will start to employ a so-called mixed strategy. Let’s 

use a probability distribution X = (a, b)to encapsulate this, where it should be understood that 

Nash will put the bomb in the bomber with a probability a and in the support plane with a 

probability b. Using this notation, a pure strategy is then (1, 0) -bomb always in the bomber- or 
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(0, 1) -bomb always in the support plane. Let us denote by A the matrix of table 1.1. For any 

strategies X ∈ Sb1 and Y ∈ Sb2 (Sbi should be understood as the set of all possible mixed 

strategies of player i) we can calculate the expected payoff H(X, Y ) by moderating the payoffs 

of the pure strategies, i.e., by calculating XAY T . For any strategy Nash (Neumann) picks, the 

strategy that minimizes the other’s payoff is called the optimal counterstrategy or the best reply. 

Theorem 1- If either Nash or Neumann employ a fixed strategy (and it means they will not keep 

changing the probabilities of how they distribute their choices), then the opponent’s best reply is 

a pure strategy. 

Proof - Assume Nash’s strategy is X = (1 − x, x) and Neumann’s Y = (1 − y, y). The expected 

payoff is the averaged payoff of every situation. For the sake of generality, let’s assume a general 

(aij ) payoff 2 × 2-matrix for Nash. Thus, for x ∈ [0, 1]H(X, Y ) = H((1 − x, x),(1 − y, y)) = (1 − 

x)(1 − y)a11 + (1 − x)ya12 + x(1 − y)a21 + +xya22 = x(−a11 + a11y + a21 − a12y − a21y − a22y) + (a11 

− a11y + a21y) 

Given that y is fixed, the function Hb(x) is a straight line, Hb(x) = ax + b, so obviously the 

maximum and minimum of the function will be attained at the borders (either where x = 0 or 

where x = 1). The same result clearly holds if x is fixed and we let y vary. 

Max-Min Strategy  

Let Nash have a strategy X = (1 − x, x), where x is the probability he will put the bomb in the 

support plane. As it has just been seen, Neumann’s best reply will either be the strategy (1, 0) or 

(0, 1), so let’s focus only on these cases. We will therefore have two possible payoffs when Nash 

uses X. 

r1(x) = H(X,(1, 0)) = (0.7 − 0.6)x + 0.6 = 0.1x + 0.6 

r2(x) = H(X,(0, 1)) = −0.65x + 1 

Neumann, in order to protect his citizens, clearly wants to minimize Nash’s gain, and therefore 

between these two possible options, he will always prefer the smaller one, so in the end the 

payoff will be: 

           H(X, Y ) = H(x) = min{r1(x), r2(x)} 

we can see the graph of H(x). Since the intersection of r1(x) and r2(x) (x ∗ = 0, 533 and Hb(x ∗ ) 

= 0, 653) is the higher point of the graph H(X, Y ), it is Nash’s wisest choice. 
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 Graph of min{H(X,(1, 0)), H(X,(0, 1))} 
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Nash will maximize the function min{r1(x), r2(x)}, thus he will maximize Neumann’s minimal 

return, and that’s why we call it the max-min strategy. Nash then will employ the strategy 

 X∗ = (0.47, 0.53) and succeed, at least, 65.3% of the times.  

Nevertheless, if he does not adhere to these recommendations, it is clear that  

for x ≤ 0.533 (when the bomb is in the bombarder more than 53.3% of the time) Neumann 

should always attack the bomborder  

 for x ≥ 0.533 (when the bomb is in support plane more than 46.7% of the times) Neumann 

should attack the support plane. 

 

Solution of the game 

At the beginning, we said that Nash could guarantee an attack efficiency of 60% and Neumann 

could make sure the attack success rate didn’t exceed 70%. Their guarantees were different. 

However, if we allow mixed strategies, the guarantees do coincide! This is a central theorem in 

Game Theory that we will prove in this thesis. When Nash employs his min-max strategy and 

Neumann his max-min strategy 2 we will see a 65.3% success rate of Nash’s attacks. This will 

be called the value of the game. As we will see, this game is solved as we can give: 

 min-max strategy-  X∗ = (0.47, 0.53)  

max-min strategy-  Y ∗ = (0.87, 0.13) value of the game v = H(X ∗ , Y∗ ) = 0.653 

 

Conclusion 

The reader should now wonder: doesn’t this contradict Theorem 1.1? It was stated and proven 

that for any fixed strategy that your opponent picked, the optimal counterstrategy was a pure 

strategy. When player 1 picks X∗which is a fixed strategy, why do we suggest player 2 pick Y ∗ , 

which is not a pure strategy , The answer is that itcanbe readily checked that 

Hb(X, Y ∗ ) = v ∀X ∈ Sb1 

 Hb(X ∗ , Y ) = v ∀Y ∈ Sb2 

and given this remarkable property, it is convenient for every player to pick a max-min strategy 

because they guarantee certain results that other strategies fail to assure. 
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