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Abstract:  

Free convection is evident with a large number of analytical, numerical and experimental works 

considering various problems in pure free convection and combined free and forced convection 

both in internal flows and in boundary layer flows. Our present study is based mainly on the 

analysis made by Soundalgekar, in which an extensive theoretical study of free convection effects 

on oscillatory flow has been presented. The mean and fluctuating flow in two separate parts 

emphasizing the former one have been discussed. Here, in our study we have presented the 

magnetic aspect of the above problem with the consideration of Joulean dissipation term in the 

energy equation and changed boundary condition at infinity. Also, we have assumed variable 

suction velocity at the plate. It has been concluded by Soundalgekar that owing to the greater 

viscous dissipative heat, the mean skin friction always increases. Our investigation leads to the 

conclusion that in the presence of magnetic field, greater viscous dissipative heat leads to a 

decrease in the mean skin friction of air and an increase in the mean skin friction of water. 

Introduction: 

Recently, in a series of papers, published by Soundalgekar and his co-workers [6 – 10], an elegant 

analysis of free convection oscillatory flow has been presented. Soundalgekar and Pop [8], the 

effects of variable suction velocity on free convection oscillatory flow have been discussed. 

Soundalgekar [7] studied the free convection effects on the oscillatory flow past an infinite, 

vertical, porous plate with constant suction and Joulean dissipation terms in the energy equation 

and solved the coupled non-linear equations by Fourier series method. 

Further, the values of mean skin friction and mean heat transfer rate with respect to the parameter 

G, E and P are entered in the Tables 1 and 2. It has been observed from the Table –1 that due to 

greater cooling of the plate by free convection currents, mean skin friction increases always. From 

Table 2 we observe that greater cooling of the plate leads to an increase in the mean heat transfer 

rate of air and a decrease in the mean heat transfer rate of water. The effects of suction parameter 
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on the amplitudes and phases of the skin friction and heat transfer rate have been discussed. Our 

analysis is based on Acharya et al. [1], Bujurke et al. [2], Chauhan and Sahai [3], Gordon et al. 

[4], Lightill [5], Varshney and Ram Prakash [11], Varshney and Sharma [12] and Whittaker and 

Lister [13]. Such type of theoretical study helps in providing a qualitative insight to the generation 

of boundary plumes. It has been suggested that in a region of strong magnetic field a boundary line 

plume is generated which is needed in nuclear fusion reactor blankets. 

Mathematical Analysis: 

  Two dimensional unsteady MHD boundary layer flow of electrically conducting, 

incompressible, viscous fluid past an infinite vertical porous plate with variable suction is 

considered. The x  and y  axes are taken along and perpendicular to the plate, respectively. A 

uniformly distributed constant magnetic field B0 is assumed to act in y  direction. The free 

convection boundary layer flow is maintained by the differences between the plate and stream 

temperatures. Also the flow is assumed to be at small magnetic Reynolds number so that the 

induced effect can be neglected. With viscous and Joulean dissipation terms taking into 

consideration in energy equation, the flow under the Boussinesq approximation is governed by :  
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The boundary conditions are 
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(1.4) 
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  As we have proposed to study variable suction case, integrating equation (1.1) we 

get 
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                                 (1.5) 

where the notation have their usual meaning. 

  On substitution equation (1.5), the equations (1.2)  by virtue of the non-dimensional 

transformations reduce to 
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The non-dimensional boundary conditions are 

  ,1,0u;0y   

(1.8) 

  0,0u;y  . 

Solution by Perturbation Method –  

  To solve the equations (1.6) and (1.7), we assume 

        ,yueyut,yu
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(1.9) 
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Substituting equation (1.9) into (1.6) and (1.7), equating the coefficient of harmonic and non-

harmonic terms, neglecting the coefficient of 2, we get 
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In view of equation (1.9), boundary conditions (1.8) reduce to 
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In equation (1.10) – (1.13), the primes denote the differentiation with respect to y. These equations 

are still coupled and non-linear and so are difficult to solve. To solve them, we again expand u0, 

u1, 0 and 1 in powers of E. Hence we assume 
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Substituting equations (1.15) – (1.18) in equations (1.10) – (1.13), equating the coefficients of 

different powers of E, neglecting the coefficient of E2 and so on, we have 
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Now, the above differential equations are linear and easily solvable. In view of equations (1.15) – 

(1.18), the equations (1.9) can be written as 

          2

1000
E0yuEyut,yu   

           ,E0yuEyue 2

1101

ti  
 

(1.28) 

          2

1000
E0yEyt,y   

           .E0yEye 2

1101

ti  
 

(1.29) 

Pramana Research Journal

Volume 9, Issue 6, 2019

ISSN NO: 2249-2976

https://pramanaresearch.org/53



As the second term of harmonic fluctuation in the above equations is the product of E which can 

be neglected on order consideration, therefore we have 
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The values of u00, u01, u10, 00, 01 and 10 can be obtained by solving the equations (1.19), (1.20), 

(1.21), (1.23) (1.24) and (1.25) respectively subject to the boundary conditions (1.27). Thus we 

get 
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  Putting the values of u00, u01, 00 and 01, we obtain the mean velocity and mean 

temperature as 
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For t = /2, the transient velocity and transient temperature are 
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where, ui and i are the imaginary parts of u10 and 10, respectively. 

  From the equation (1.30) we calculate the skin friction which is given by 
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where, m is the mean skin friction and is given by 
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In terms of amplitude and phase, the skin friction can be expressed as 
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From the equation (1.31), we calculate the rate of heat transfer from the plate to the fluid which is 

given by 
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(1.39) 

where, m is the mean heat transfer rate and is given by 
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(1.40) 

In terms of amplitude and phase,  can be written as 

    ,tcosD
m

  

where 

 D  =  Dr  +  i Di  =  coefficient of 
tie   in equation (1.39), 

  .
D

D
tan

r

i  

 

Results and Discussion: 

  For different values of G, E and P, the values of mean skin friction m and mean 

heat transfer rate m are entered in Tables – 1 and 2.  
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By putting M = 0 in the equation (1.37), the values of m for air are obtained to be negative for 

both G > 0 or G < 0 and moreover m is dominated by the second term (coefficient of E) in the 

right hand side of the above equation. Due to the application of magnetic field such as M = 8, the 

values of m are positive for G > 0 and negative for G < 0 and moreover m is dominated by the 

first term of the equation (1.37). From the Table – 1 we observe that due to greater cooling of the 

plate, m increases for air and water whereas owing to the greater viscous dissipative heat, m 

decreases for air and increases for water. With increasing Prandtl number, m decreases for G > 0 

and increases for G < 0. 

  From Table –2 we observe that due to greater cooling of the plate, m increases for 

air and decreases for water whereas due to grater heating of the plate, m decreases for air and 

increases for water. For G > 0, greater viscous dissipative heat leads to an increase in Km for air 

and a decrease in m for water while for G < 0, the conclusion is reverse. With increasing Prandtl 

number, m increases for both G less than or greater than 0. 

                                    Table –1 Mean skin friction, M = 8 

G E 

P 

0.71 3.00 7.00 

5 0.01 2.8813 1.4388 0.6257 

5 0.02 2.8387 1.6277 0.6265 

10 0.01 5.5069 4.0110 1.2560 

10 0.02 5.1659 5.5220 1.2620 
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15 0.01 7.6209 8.8496 1.8952 

– 5 – 0.01 – 2.9665 – 1.0611 – 0.6242 

– 5 – 0.02 – 3.0091 – 0.8722 – 0.6235 

– 10 – 0.01 – 6.1889 – 0.9890 – 1.2440 

– 10 – 0.02 – 6.5302 0.5252 – 1.2380 

– 15 – 0.01 – 9.9228 1.3496 – 1.8547 

 

Table –2 Mean rate of heat transfer, M = 8 

G E 

P 

0.71 3.00 7.00 

5 0.01 0.7843 2.0937 6.9873 

5 0.02 0.8587 1.1875 6.9747 

10 0.01 1.0074 – 0.6250 6.9495 

10 0.02 1.3048 – 4.2500 6.8990 

15 0.01 1.3791 – 5.1562 6.8863 

– 5 – 0.01 0.6356 3.9062 7.0126 

– 5 – 0.02 0.5613 4.8125 7.0252 
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– 10 – 0.01 0.4126 6.6250 7.0505 

– 10 – 0.02 0.1152 10.2500 7.1010 

– 15 – 0.01 0.0408 11.1562 7.1136 
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