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proved some results of linear codes over finite Strict Semidomain.  
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Introduction 

 Errors occur after transmission of data through a channel. Generally 

encoding of the data is in the form of 0`s and 1`s and it has some fixed length in 

the form of vector over finite field Fq. In other words C is the code which is a 

subset of Fqn and its length is n. The main tools of coding theory are Group theory 

and Combinatorics. First Goppa defined algebraic geometric codes over finite 

fields [1, 2]. After Goppa, to construct a code Tsfasman and Vladut used modular 

curves [4].Recently linear codes and algebraic geometric codes over rings are 

defined by Judy Walker using new techniques in algebraic geometry [8]. We have 

introduced linear codes over finite strict semidomain and explore the relation with 

associated linear codes over finite fields [14].In semirings, additive inverse and 

multiplicative inverse is absent, so I feel that codes over semirings can be more 

convenient and useful.  

The purpose of this paper is to prove some results of linear codes over 

finite strict semidomain. Section 2, gives the background to prove some results of 

linear codes over finite Strict Semidomain. In section 3 we prove some results of 

linear codes over finite strict semidomain.  

 

2. Preliminaries 
Definition2.1 [11]: Let S be the non empty set on which is defined two binary 

operations, addition ‘+’ and multiplication ‘•’ satisfying the following conditions. 

 1) (S, +, 0) is commutative monoid. 

 2) (S, •, 1) is monoid. 

 3) (a + b) • c = a•c + b•c  and 

 4) a • ( b + c ) = (a•b) + (a•c), ∀a, b, c ∈ S 

that is multiplication ‘•’ distributes over the operation addition ‘+’ . (S , + , • ) is a 

semiring. 

Definition2.2 [11, 12]:Let S be a semiring. S is a Strict Semiring if (a + b) = 0 

a = 0 and b = 0 

Example 2.1.: Z0
 + (set of positive integers with zero) is a Strict Semiring.  

Strict Semidomain:-  

Definition2.3 [12]: Let S be a non empty set. S is said to be a Strict Semidomain  
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if 

 1) S is a Commulative Semiring with 1. 

 2) S is a Strict Semiring. That is for a, b ∈ S, if a + b = 0 then a = 0 and b = 

0  

3) If in S, a • b = 0 then either a = 0 or b = 0. 

Example 2.2:1) Let Z0
+ (set of positive integers with zero) be the semiring, Z0

 + is 

strict Semidomain. 

            3) Every Chain lattice is a Strict Semidomain. 

Note that for strict semidomain ‘SSD’ abbrivation is used throughout. Also unless 

otherwise mentioned S will denote a SSD. 

 

Semimodules over Strict Semidomain 
Definition2.4[11]:Let S be a SSD. A S-Semimodule is commulative monoid (M, 

+) with additive identity 0M for which we have a function S x M → M denoted by 

(s , m) → s m and called scalar multiplication Which satisfies the following 

conditions for all elements S, S'∈ S and all elements m, m' ∈ M 

 1) (s s' ) m = s (s' m) 

 2) s(m + m')=s m + s m' 

 3) (s + s')m = s m + s' m 

 4) 1S m = m  

 5) s 0M = 0M = 0s M 

Example 2.3: 1) Every Semiring S is an Z0
 + -Semimodule. 

        2) Let V = Z0
+  x Z0

 + x …… x Z0
 + (n times) then V is a Z0

 + -Semimodule 

over Z0
 + . 

Sub-Semimodule:- 

Definition2.5[11]:A non-empty subset N of a S-Semimodule M is a 

subsemimodule of M if and only if N contains additive identity 0 and N is closed 

under addition and scalar multiplication.  

Basis of S-Semimodule 
Definition 2.6[9]: Let M be a semimodule over SSD S. The expression a1m1 + 

a2m2 +….+ anmn , where a1, a2,…….., an ∈ S are scalars is called a  linear 

combination of elements m1,m2,…., mn ∈ M.  

Definition 2.7[9]: In semimodule M over SSD S, a single element m is linearly 

independent.  

If none elements m1, m2,…….., mn∈ M, n  ≥ 2 can be represented by a linear 

combination of the others then they are linearly independent. Otherwise, we say 

that m1,m2,….., mn are linearly dependent. An infinite set of elements is linearly 

independent if any finite subset of it is linearly independent. 

A nonempty subset of semimodule M over SSD S is called a set of 

generators if every element of the semimodule M over SSD S is a linear 

combination of its elements. 

Definition 2.8[9]: A linearly independent set of generators of semimodule M over 

SSD S is called a basis of M.  

Note [9, 11, 12] In semimodule M  over SSD S, the number of elements in each 

basis may not be same.  

Additive Irreducible Element:- 

Definition2.9 [9]: Let s∈ S is called an additive irreducible element of SSD S if 

for all a, b ∈ S,  s = a + b s = a or s = b. 
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Theorem2.1 [9]: In S-Semimodule, each basis has the same number of elements if 

and only if 1 is an additive irreducible element. 

Definition2.10 [9]: Let S be a SSD. If for a ∈ S there exists an element b ∈ S such 

that ab = ba = 1 then a is called an invetible element in S and element b is said to 

be an inverse of a, denoted by a−1.  

Note: U(S) denote the set of all invertible elements in SSD S. 

Note [9]: If 1 is an additive irreducible element and U(S) = 1, then in n-

dimensional                    S-Semimodule Sn ,{e1, e2,..……, en} is the unique basis. 

Definition2.11 [9]: If each basis has the same number of elements then we call the 

number of elements in each basis a dimension of S-Semimodule M. In symbols 

dim(M). In this case number of elements in basis is called rank of M. 

Free S-Semimodule 

Definition2.12 [11]: A S-Semimodule having a basis over S is called a free S-

Semimodule. Not every semimodule over a SSD is free. 

 Linear Codes over finite Strict Semidomain. 
Definition2.12 [14]: Let S be finite Strict Semidomain. A linear code C of length 

n over S is a subsemimodule of the free semimodule Sn. If C is a free 

subsemimodule then we define dimension of C to be dimC = rank(C). Elements of 

C are called codewords. 

Example 2.4: Let C3 be a Chain lattice which is a finite strict semidomain. Linear 

code over C3. 

Definition2.13 [14]: If CSn  is a code of dimension K then a generator matrix of 

C is a K x N matrix whose rows form an S-base of C.  

Definition2.14 [14]: If CSn  is a code then C┴ is the dual code of C and it is  

defined as 

C┴ = {   nS /  ,∀ y ∈ C} 

Where , ,  

   is the usual bilinear form on . 

Proposition 2.1[14]: If CSn is a code then the dual code C┴ of code C is a 

linear code. 

Lemma 2.1[14]: If C Sn  is a linear code of dimension K and M a generator 

matrix of C.  

Then C┴ = {   nS /    = 0} 

Lemma 2.2[14]: Let   be a linear map Such that,    then 

C┴ is the Kernel of f. 

If C   is a linear code of dimension K and M a generator matrix of C then 

dimension of C┴ is   

Corollary 2.1[14]: If C is a linear code and H a generator matrix of C┴ then 

(C┴)┴ = C . 

Corollary 2.2[14]: If C is a linear code and H a generator matrix of C┴ then                                    

C = {   nS / H t = 0}. 

3. Some results of Linear Codes over finite Strict Semidomain. 
Definition3.1: The Hamming distance d on   is given by 

  d = # { i : } 

Where   and  
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Definition3.2: The minimum distance of a code C   nS  is given by 

d (C) = min{ d / , } 

Definition3.3: The weight of is defined by  

W ( ) = d ( , ) 

Where  = (0, 0,…., 0) 

 Remark 3.1: The function d is a metric on . 

 Proof: 1) d ≥ 0. 

 ii) d = 0 if and only if  

           iii) d = d  

           iv) d ≤ d + d   

Where , and  

 (i), (ii) and (iii) are obvious from the definition of the Hamming distance. 

It is enough to prove (iv), when n = 1, then it is true. 

If  then (iv) is obviously true since  

If , then either  or , so (iv) is again true. 

Remark 3.2: For a linear code C  nS , d(C) = min {W ( ):  \ { }}. 

Definition3.4: In nS  , the redundancy is  of a k-dimensional linear code  

Definition3.5: Parity check matrix of linear code is generator matrix of its dual. 

Lemma3.1: 

If C is a linear code and H a parity check matrix of C then 

1) There exists  C of weight W if and only if there exists W columns 

of H which are   – linearly dependent. 

2) We have  

d (C) =  min {W  Z  / ∃ W Columns - linearly dependent in H} 

Proof: 1) If C is a linear code and H a parity check matrix of C. 

  Where C = {   nS / H = } by Corollary 2.2 

  Suppose  of weight W. 

Let  be the columns of H. 

              H  =     
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  Where  

  Which are S-linearly dependent. 

2)   of weight W  

     By definition of d(C)  

  d(C) = min{ W ( ) /  \ {0}} 

d(C) = min {W  Z  / ∃ W Columns - linearly dependent in H} 

Corollary3.1: (Singleton Bound) 

For a S-linear code of length n, dimension k and minimum distance 

d, 

  

Proof:          Let H being a parity check matrix of C.  

                      Columns of H are S-linearly independent. 

          Since H has rank  

          (Because H is generator matrix of C┴ and dimension of C is .) 

            . 

OR 

 Proof:  

  Let E be the encoding of the code  

   

Consider a projection π of  bits of the encoded string. By 

projection, we mean consider only the first  bits and ignore 

the rest. 

  Since the original message is k bits, by Pigeon Hole principle, there 

exists at least  

   

  These two codes can differ in maximum of  bits 

    

Definition3.5:  

If   then a linear code of length n, dimension k and 

minimum distance d over finite SSD S is called maximum distance 

separable (MDS)  
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Proposition3.1: 

The dual code of a maximum distance separable code is maximum 

distance separable. 

Proof:    Let C be maximum distance separable code of length n and 

dimension k , H be a parity  check matrix of C and C┴ is dual code 

of maximum distance separable code C. 

 be the columns of H. 

  Then the usual element of C┴ can be written as,  

  H = < , y>,………, < > 

  Where ranges over n kS  and  is the  thi column of H. 

            Since C is MDS,   columns of H are linearly independent. 

Hence, the maximum number of columns of H are which 

are solutions of the linear equation < > = 0. 

The minimum distance of C┴ is at least  and 

hence C┴ is maximum distance separable. 

 

Conclusions: 
In this paper we proved some results of linear codes over finite strict semidomain 

and explore the relation with associated linear codes over finite fields.  
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