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Abstract

We characterize a quasi-complemented in terms of topological terms
and prove that if P is a prime ideal of I(L) ( Q is a prime ideal of
L ), then C(P)= ∪{J ∈ I(L)/J ∈ P} is a prime ideal in L ( τ(Q) =
{J ∈ I(L)/J ⊂ Q} is prime ideal in I(L). We prove that the necessary
and sufficient conditions for an ADL in which every dense element is a
maximal to become a quasi-complemented ADL in terms of τM

h , τM
d and

prove that L is a quasi-complemented ADL if and only if M is a compact
in the hull-kernel topology. and derive a necessary and sufficient condition
for an ADLs to become a quasi-complemented ADLs.

AMS Subject classification : 06D99, 06D15.
Key words : Almost Distributive Lattices(ADLs), α-ideals, Annihilator Ideals
in ADLs and quasi complemented ADLs.

1 Preliminaries

The concept of an Almost Distributive Lattice (ADL) was introduced
by Swamy U M and Rao G C [4], as a common abstraction of existing lattice
theoretic and ring theoretic generalization of Boolean algebra. The concept of
quasi-complemented Almost Distributive Lattices was introduced in [2].

Definition 1.1. An algebra (L, ∨, ∧, 0) of type (2, 2, 0) is called an Almost
Distributive Lattice (ADL) if it satisfies the following axioms:

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(3) (a ∨ b) ∧ b = b
(4) (a ∨ b) ∧ a = a
(5) a ∨ (a ∧ b) = a
(6) 0 ∧ a = 0 for all a, b, c ∈ L
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In the following a partial order is defined on an ADL (L, ∨, ∧, 0).

Definition 1.2. Let L be an ADL and for any a, b ∈ L. Then we say that a is
less than or equal to b and write a ≤ b if a∧b = a or equivalently a∨b = b.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except possibly the right distributivity of ∨ over ∧, commu-
tativity of ∨, commutativity of ∧. Any one of these properties make an ADL
L, a distributive lattice.

Definition 1.3. Let (L, ∨, ∧, 0) be an ADL. By an interval in L we mean the
set [a, b] := {x ∈ L / a ≤ x ≤ b} for some a, b ∈ L with a ≤ b. Every interval
[a, b] in an ADL is a bounded distributive lattice. An ADL (L, ∨, ∧, 0) is said
to be relatively complemented if every interval [a, b], a ≤ b in L is a Boolean
algebra.

Theorem 1.4. Let L be an ADL and a, b, c ∈ L. Then we have the following
1. a ∨ b = a ⇔ a ∧ b = b
2. a ∨ b = b ⇔ a ∧ b = a
3. a ∧ b = a ∧ b , whenever a ≤ b
4. ∧ is associate in L
5. a ∧ b ∧ c = b ∧ a ∧ c
6. (a ∨ b) ∧ c = (b ∨ a) ∧ c
7. a ∧ b = 0 ⇔ b ∧ a = 0
8. a ∧ a = a and a ∨ a = a

A non-empty subset I of an ADL L is called an ideal (filter) of L if
a ∨ b ∈ I (a ∧ b ∈ I) and a ∧ x ∈ I (x ∨ a ∈ I), for any a, b ∈ I and x ∈ L. If
I is an ideal of L and a, b ∈ L, then a ∧ b ∈ I ⇔ b ∧ a ∈ I. The set I(L) of all
ideals of L is a complete distributive lattice with the least element (0] and the
greatest element L under set inclusion in which, for any I, J ∈ I(L), I∩J is the
infimum of I, J and the supremum is given by I ∨ J = {i∨ j/i ∈ I, j ∈ J}. For
any a ∈ L, (a] = {a∧x/x ∈ L} is the principal ideal generated by a. Similarly,
[a) = {x ∨ a/x ∈ L} is the principal filter generated by a. The set PI(L) of all
principal ideals of L is sub lattice of I(L).

An element a ∈ L is called dense if (a]∗ = (0] and set of all dense elements
is denoted by D. Then D is filter, whenever D is non-empty. An ADL L with 0
is called a ∗-ADL if to each x ∈ L, there exists y ∈ L such that [x]∗∗ = [y]∗.
An ADL L with 0 is a ∗-ADL if and only if to each x ∈ L, there exists y ∈ L
such that x ∧ y = 0 and x ∨ y ∈ D. Every ∗-ADL possesses a dense element.

Lemma 1.5. Let L be an ADL with 0 and a, b ∈ L.Then we have the following
:
1. (a] ∨ (b] = (a ∨ b] = (b ∨ a]
2. (a] ∩ (b] = (a ∧ b] = (b ∧ a]
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2 Topological Characterization of QCADLs

In this section, we characterize a quasi-complemented in terms of topo-
logical terms and prove that if P is a prime ideal of I(L) ( Q is a prime ideal
of L ), then C(P)= ∪{J ∈ I(L)/J ∈ P} is a prime ideal in L ( τ(Q) =
{J ∈ I(L)/J ⊂ Q} is prime ideal in I(L). We prove that the necessary and
sufficient conditions for an ADL in which every dense element is a maximal to
become a quasi-complemented ADL in terms of τMh , τMd and prove that L
is a quasi-complemented ADL if and only if M is a compact in the hull-kernel
topology. We prove that in an ADL with a maximal element m in which ev-
ery dense element is maximal, then L is a quasi-complemented ADL if and
only if C(P ) ∈ M , for each P ∈ m(I(L)) and moreover J∗∗ ∈ A0(L),
for each J ∈ I(L) if and only if L is a quasi-complemented ADL and for
each Q ∈ M , there exists unique P ∈ m(I(L)) such that C(P) = Q. We
derive the set of an equivalent conditions for an ADL in which every dense el-
ement is a maximal to become a quasi-complemented ADL in terms of annulets.

From the definitions of C(P) and τ(Q), we prove the following.

Lemma 2.1. Let L be an ADL with 0. If P is a prime ideal in I(L), C(P) is
a prime ideal in L.

Proof. Let x, y ∈ C(P ). Then by definition of C(P), x ∈ I1, y ∈ I2, for some
I1, I2 ∈ P . It follows that x ∨ y ∈ I1 ∨ I2 and hence I1 ∨ I2 ∈ P . Therefore
x ∨ y ∈ C(P ). Let x ∈ C(P ) and y ∈ L. Then x ∈ I for some I ∈ P . It
follows that x ∧ y ∈ I and hence x ∧ y ∈ C(P ). Thus C(P) is an ideal in L. Let
x, y ∈ L such that x /∈ C(P ) and y /∈ C(P ). Suppose x ∧ y ∈ C(P ). Then
x ∧ y ∈ I for some I ∈ P . It follows that (x ∧ y] ⊆ I and I ∈ P

⇒ (x ∧ y] ∈ P
⇒ (x] ∧ (y] ∈ P ( since (x ∧ y] = (x] ∧ (y])
⇒ (x] ∈ P or (y] ∈ P (since P is a prime ideal)

⇒ x ∈ C(P ) or y ∈ C(P ) (since by definition of C(P))
Which is a contradiction to x /∈ C(P ) and y /∈ C(P ). Therefore x∧y /∈ C(P ).
Hence C(P) is a prime ideal in L. �

Lemma 2.2. Let L be an ADL with 0. If Q is a prime ideal in L, then τ(Q) is
a prime ideal in I(L).

Proof. Suppose Q is a prime ideal in L. Let J1, J2 ∈ τ(Q). Then by definition
of τ(Q), J1 ⊆ Q J2 ⊆ Q. It follows that J1 ∨ J2 ⊆ Q. Hence J1 ∨ J2 ⊆ τ(Q).
Let J ∈ τ(Q) and K ∈ I(L). Then J ⊆ Q and hence J ∩ K ⊆ Q. There-
fore J ∩ K ∈ τ(Q). Hence τ(Q) is an ideal. Let J1, J2 ∈ I(L) such that
J1 ∩ J2 ∈ τ(Q). Then J1 ∩ J2 ⊆ Q. It follows that J1 ⊆ Q or J2 ⊆ Q ( since
Q is a prime ideal in L). Therefore J1 ⊆ τ(Q) or J2 ⊆ τ(Q). Hence τ(Q) is a
prime ideal in I(L).

�
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Now, we prove the following.

Lemma 2.3. Let L be an ADL such that C(P ) ∈ M , for each P ∈ m(I(L)).
Then the mapping ϕ : m(I(L)) → M defined by ϕ(P ) = C(P ), for each P ∈
m(I(L)) is an onto continues closed mapping.

Proof. Clearly ϕ is well defined mapping. Let Q ∈ m(I(L)). Then τ(Q) is a
prime ideal in I(L) and it contains a minimal prime ideal P of I(L). Now, we
shall prove that C(P) = Q. Let x ∈ C(P ). Then x ∈ J for some J ∈ P . It
follows that (x] ⊆ J and J ∈ P . Therefore (x] ∈ P , since P being an ideal in
I(L). Thus (x] ∈ τ(Q), since P ⊆ τ(Q). Hence C(P ) ⊆ Q. We have C(P) and
Q are both minimal prime ideals in L, we get C(P) = Q. Therefore ϕ is an onto
mapping. Claim: ϕ−1(Ma) = MI .
Now, Let a ∈ L. Then ϕ−1(Ma) = {P ∈ m(I(L)) / ϕ(P ) ∈ Ma}

= {P ∈ m(I(L)) / C(P ) ∈ Ma}
= {P ∈ m(I(L)) / a /∈ C(P )}
= {P ∈ m(I(L)) / (a] & C(P )}
= {P ∈ m(I(L)) /(a] /∈ P}
= M(a].

Thus the inverse image of a basic open set in M is again a open set in m(I(L)).
Hence ϕ is a continuous map. The space m(I(L)) is a compact space and
M is a Hausedorff space. Hence the mapping ϕ being continuous, is a closed
mapping. �

We now derive the necessary and sufficient conditions for an ADL in every
dense element is a maximal to become a quasi-complemented ADL.

Theorem 2.4. Let L be an ADL with maximal element m in which every dense
element is maximal. Then L is quasi-complemented ADL if and only if for each
x ∈ L, there exists y ∈ L such that Mx = hM (y).

Proof. Suppose L is quasi-complemented ADL.We have every quasi-complemented
ADL is a ∗ ADL. Let x ∈ L. Then there exists y ∈ L such that [x]∗ = [y]∗∗.
Therefore hM ([x]∗) = hM ([y]∗∗) and hence hM ([x]∗) = hM (y). Thus Mx =
hM (y). Conversely suppose that for each x ∈ L, there exists y ∈ L such
that Mx = hM (y). We shall prove that L is quasi-complemented ADL. Since
Mx = hM (y), hM ([x]∗) = hM ([y]∗∗). Hence we get [x]∗ = [y]∗∗. There-
fore x ∧ y = 0 and x ∨ y is dense. It follows that x ∧ y = 0 and x ∨ y is a
maximal. Thus L is a quasi-complemented ADL. �

Theorem 2.5. Let L be an ADL with maximal element m in which every dense
element is maximal. Then L is a quasi-complemented ADL if and only if M is
a compact in the hull-kernel topology.

Proof. Suppose L is quasi-complemented ADL. Then for each x ∈ L there
exists y ∈ L such that Mx = hM (y) and hence Mx is a basic closed set in
M. Let {Mx/x ∈ ∆} be a family of closed sets in M with finite intersection
property for some ∆ ⊆ L. Let F be a filter in L generated by ∆. Then for
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any x1, x2, ....... , xn ∈ ∆,
n∩

i=1

Mx ̸= ϕ and hence M n∧
i=1

xi

̸= ϕ. It follows that

n∧
i=1

xi ̸= 0. Therefore 0 /∈ F and hence F is a proper filter of L. It follows that

F is contained in a maximal filter say K of L. Therefore L − K is minimal
prime ideal of L. Let x ∈ ∆. Then x /∈ L − K. Therefore L − K ∈ Mx, for
all x ∈ ∆. Hence L −K ∈

∩
x∈∆

Mx, we get
∩

x∈∆

Mx ̸= ϕ. Thus M is compact

in hull-kernel topology.
Conversely suppose M is a compact in the hull-kernel topology on M and

x ∈ L. Then hM (x) being a closed subset of M, is a compact. If x ∈ P ,
then. Hence by Lemma 0.3.31, [x]∗ * P . Thus hM (x)∩hM ([x]∗) = ϕ. So that
hM (x) ∩

∩
t∈[x]∗

hM (t) = ϕ. Now, {hM (x) ∩ hM (t)/t ∈ [x]∗} is a class of closed

sets in hM (x) having empty intersection, there exists t1 , t2 , ....... , tn ∈
[x]∗ such that hM (x) ∩ hM (t1) ∩ hM (t2) ∩ .... ∩ hM (tn) = ϕ. Write x′ =
n∨

i=n

ti, then hM (x) ∩ hM (x′) = ϕ. It follows that Mx ∪ Mx′ = M and Mx ∩

Mx′ = Mx∧x′ = M0 = ϕ. Therefore Mx′ = hM (x) and Mx = hM (x′). Hence
hM ([x]∗∗)= hM (x) = Mx′ = hM ([x′]∗). Hence by Lemma 0.3.46, we get [x]∗∗ =
[x′]∗. It follows that x∧x′ = 0 and x∨x′ is dense. Thus x∧x′= 0 and x∨x′ is
a maximal and hence L is quasi-complemented ADL. �

We immediately have the following from Theorems 2.4 and 2.5.

Corollary 2.6. Let L be an ADL with maximal element m in which every dense
element is a maximal. Then the following are equivalent:
(1) L is a quasi-complemented ADL
(2) τMh = τMd
(3) M is compact in hull-kernel topology.

Recall that for a prime ideal P of I(L), C(P)= ∪{J ∈ I(L)/J ∈ P} is a
prime ideal in L and derive the following theorem.

Theorem 2.7. Let L be an ADL with maximal element m in which every
dense element is maximal. Then L is a quasi-complemented ADL if and only
if C(P ) ∈ M , for each P ∈ m(I(L)).

Proof. Suppose L is a quasi-complemented ADL and P ∈ m(I(L)). Clearly by
Lemma 2.3, C(P) is a prime ideal in L. Let x ∈ C(P ). Then x ∈ J , for some
J ∈ P . Therefore (x] ⊆ J and hence (x] ∈ P . Since L is a quasi-complemented
ADL, there exists x′ ∈ L such that x ∧ x′ = 0 and x ∨ x′ is a maximal.
But, (x] ∨ (x′] = (x ∨ x′] = L and (x] ∨ (x′] /∈ P , since P is minimal prime
ideal in I(L), it follows that (x′] /∈ P . If x′ ∈ C(P ), then x′ ∈ J for some
J ∈ P . Therefore (x′] ⊆ J and hence (x′] ∈ P , which is a contradiction. Hence
x′ /∈ C(P ). Thus for each x ∈ C(P ), there exists x′ /∈ C(P ) such that x∧ x′

= 0. Hence C(P) is a minimal prime ideal of L. Hence C(P ) ∈ M .
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Conversely assume the condition. We have the mapping ϕ : m(I(L)) → M
defined by ϕ(P ) = C(P ), for each P ∈ m(I(L)) is onto continues and closed.
Therefore M is a compact. By Theorem 2.5, we get L is a quasi-complemented
ADL. �

We recall that the set A0(L) of all annulets of an ADL L forms a distributive
lattice under the binary operations Z and Y defined by [x]∗ Z [y]∗ = [x∨ y]∗

and [x]∗ Y [y]∗ = [x ∧ y]∗, for any [x]∗, [y]∗ ∈ A0(L).
Next, we characterize a quasi-complemented ADL in terns of annulets.

Theorem 2.8. Let L be an ADL with a maximal element m in which every
dense element is a maximal. Then J∗∗ ∈ A0(L), for each J ∈ I(L) if and
only if L is a quasi-complemented ADL and for each Q ∈ M , there exists
unique P ∈ m(I(L)) such that C(P) = Q.

Proof. Suppose J∗∗ ∈ A0(L), for each J ∈ I(L). Let x ∈ L. Then we
have [x]∗∗ ∈ A0(L). It follows that, there exists x′ ∈ L such that [x]∗∗ = [x′]∗.
Hence x ∧ x′ = 0 and x ∨ x′ is a dense. Therefore by hypothesis, x ∧ x′ =
0 and x ∨ x′ is maximal. Thus L is a quasi- complemented ADL. Now, let
Q ∈ M and P1 , P2 ∈ m(I(L)) such that C(P1) = C(P2) = Q. Let J ∈ P1.
Then J∗ ∈ I(L) and J ∩J∗ = (0]. Since P1 ∈ m(I(L)), J ∈ P1, J∗ /∈ P1, (by
Lemma 0.3.31). Again, Since J∗ ∈ I(L), J∗ ∈ A0(L). Hence there exists
y ∈ L such that J∗ = (y]∗. Again, since P1 ∈ m(I(L)), J ∈ P1 and
J∗ ∩ J∗∗ = {0} ∈ P1, J∗∗ ∈ P1. Therefore (y]∗∗ ∈ P1, and hence (y] ∈ P1.
It follows that y ∈ C(P1) = C(P2) and hence (y] ∈ P2. Therefore [y]∗ /∈ P2,
since P2 is a minimal prime ideal. Hence J∗ /∈ P2. Therefore J ∈ P2 and
hence P1 ⊆ P2. Hence P1 = P2, since P1, P2 are minimal prime ideals.
Therefore for each Q ∈ M , there exists unique P ∈ m(I(L)) such that C(P)
= Q.

Conversely, suppose L is a quasi-complemented ADL and for each Q ∈
M , there exists unique P ∈ m(I(L)) such that C(P) = Q. If C(P1) =
C(P2), then P1 = P2, for P1, P2 ∈ m(I(L)). Then there exists a mapping
ϕ : m(I(L)) → M defined by ϕ(P ) = C(P ) is a homeomorphism. Let
J ∈ I(L). Then hM (J∗) is both open and closed sets in M. Hence M−hM (J∗)
is compact(being closed subset of compact space M is compact). Therefore

M −hM (J∗) =
n∪

i=1

Mai = M n∨
i=1

ai

. Now, put y =
n∨

i=1

ai. Then M −hM (J∗) =

My = hM ([y]∗) = M − hM ([y]∗∗). Hence hM (J∗) = hM ([y]∗∗). It follows that
J∗∗ ∈ A0(L).
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We conclude this section with the following.

Corollary 2.9. Let L be an ADL with maximal element m. Then the following
are equivalent:
(1) M is compact, Hausdorff and extremally disconnected space.
(2) The space M and m(I(L)) are homeomorphic.
(3)J∗∗ ∈ A0(L), for each J ∈ I(L)
Further any of the above conditions implies that L is a quasi-complemented
ADL.
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