DIVERSITY STATUS OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) IN RHIZOSPHERE OF SELECTED MEDICINAL PLANTS IN KANYAKUMARI DISTRICT, TAMIL NADU

* Lekshmi, J.L. MARY KENSA, V** And MOHAN V ***

*Research Scholar (FullTime), Reg No: 18113152262008, Abishehapatti, M. S. University, Tirunelveli. **PG Research centre of Botany, S.T. Hindu College, Nagercoil. Email Id: surejkensa
@gmail.com, *** Senior scientist & Nodal officer, (FRI deemed university, IFGTB centre, forest protection division, Kovai. Email Id: vmohan61@gmail.com.

ABSTRACT

In the present study, an attempt was made to investigate the diversity status of different beneficial microbes such as Arbuscular Mycorrhizal (AM) fungi and Plant Growth Promoting Rhizobacteria (PGPR) associated with 36 different medicinal plants growing in Kanyakumari district, Tamil Nadu. An attempt was made to determine the diversity status of Plant Growth Promoting Rhizobacteria in association with the rhizosphere of 36 different medicinal plants, for selection of potential bio-inoculants based on their growth hormone production and phosphate solubilization efficiency for application in nursery and field. All the PGPR isolates isolated from the rhizosphere of 36 different medicinal plants were screened for the IAA production and phosphate solubilisation efficacy under in vitro condition and some of the isolates revealed excellent performance. Those isolates were pure cultured and maintained for further screening their bio-control ability and nursery application to different medicinal plants for quality plants production.

KEYWORDS: Arbuscular Mycorrhizal, efficiency, medicinal plants, rhizosphere and solubilisation.

Introduction

Medicinal plants are the oldest form of healthcare known to mankind and from the ancient time people are using different herbs or plants as the remedy for various diseases. Medicinal plants are very good resources of new drugs. Many food crops have medicinal effects and modern medicines are produced indirectly from medicinal plants. Medicinal plants are also used for its antibacterial, antifungal and antiviral activities. Rural areas of many developing countries still rely on traditional medicine for their primary health care needs and have found a place in day-to-day life. These medicines are relatively safer and cheaper than synthetic or modern medicine. But, urban people have become dependent on synthetic medicines which have many side effects. So to reduce the side effects we can use medicinal plants for the treatment of common diseases rather than using synthetic drugs. India has a rich culture of medicinal herbs and spices, which includes about more than 2000 species and has a vast geographical area with high potential abilities for Ayurvedic, Unani and Siddha traditional medicines.

Volume 9, Issue 6, 2019

Microorganisms are ubiquitous in nature and form vital components of all known ecosystems on earth. Their ubiquity is attributed mainly to the small size, easy dispersal, ability to survive and multiply in diverse habitats, including anaerobic and other extreme conditions, their metabolic versatility and flexibility to utilize wide substrates as nutrient source. Actinomycetes, Bacteria and Fungi are the three major groups of soil inhabiting microorganisms. Diverse vegetation, including medicinal herbs, shrubs and trees harbour selected groups of soil microorganisms. Bio-fertilizers or microbial inoculants can be defined as biologically active products containing active strains of selective micro organisms like bacteria, fungi and algae alone or in combination, which may help in increasing plant productivity by way of helping in the biological nitrogen fixation, solubilisation of the insoluble chemical fertilizer material, stimulating plant growth or in decomposition of plant residues. These bio-inoculants or bio-fertilizers are beneficial microorganisms such as Plant Growth Promoting Rhizobacteria (PGPR), Arbuscular Mycorrhizal (AM) fungi, Ectomycorrhizal (E M) fungi, Frankia, Rhizobium etc., which are involved in breakdown of organic matter, N₂ fixation and secretion of plant growth substances and increase of available mineral nutrients in soil.

Among different beneficial microbes, Plant Growth Promoting Rhizobacteria (PGPR) is a group of beneficial bacteria that actively colonize plant roots and enhance plant growth and biomass. The mechanisms by which PGPR promote the plant growth, include the ability to produce plant growth hormones, asymbiotic N fixation - against plant pathogenic microorganisms by production of siderophores, the synthesis of antibiotics, enzymes and/or fungicidal synthesis of antibiotics, enzymes and/or fungicidal phosphates and other nutrients (Yang *et al.*, 2009). According to Bashan (1998) intensive and extensive interactions have been established between soil microorganisms and various other soil organisms, including plant roots and plant growth promotion by rhizosphere microorganisms is well established.

Since no much report is available on the diversity of PGPRs in the rhizosphere of different medicinal plants, the present study was undertaken to ascertain the biodiversity status of the PGPR in association with thirty six (36) different medicinal plants and also determine the population density of these organisms.

Methodology

Medicinal plants species selected under study

In the present study, thirty six medicinally important plant species of herbs, shrubs belonging twenty four families and few tree species to were selected (Table 1). Among them, the families Acanthaceae, Asteraceae, Lamiaceae and Solanaceae have 3 plant species each and the families Rutaceae, Verbenaceae, Asclepiadaceae and Combretaceae having 2 plant species each and the remaining 16 families having 1 plant species.

S.No.	Name of the Medicinal Plants	Common Name	Family
1	Acorus calamus	Vasambu	Acoraceae
2	Adathoda vasica	Adathodai	Acanthaceae
3	Aegle marmelos	Vilvam	Rutaceae
4	Aristolochia bracteolata	Aduthinnarppalai	Aristolochiaceae
5	Azadirachta indica	Neem, Vembu	Meliaceae
6	Centella asiatica	Vallarai	Apiaceae
7	Cichorium intibus	Kasinikkerai	Asteraceae
8	Eclipta prostrata	Karisilanganni	Asteraceae
9	Gmelina arborea	Kumil Thekku	Verbenaceae
10	Gymnema sylvestre	Chakkarakolli	Asclepiadaceae
11	Hemidesmus indicus	Nannaari	Asclepiadaceae
12	Hibiscua rosa-sinensis	Chembaruthi	Malvaceae
13	Hygrophylla auriculata	Nir-mulli	Acanthaceae
14	Kalanchoe pinnata	Air plant, Runakkalli	Crassulaceae
15	Limonia elephantum	Wood Apple, Vilanga	Rutaceae
16	Ocimum basilicum	Tulasi; Tirunittru	Lamiaceae
17	Ocimum sanctum	Thulasi; Holy Basil	Lamiaceae
18	Oxalis corniculata	Puli-yarai	Oxalidaceae
19	Phyllanthus emblica	Nelli; Indian Gooseberry	Phyllanthaceae
20	Phyla nodiflora	Podutalei	Verbenaceae
21	Plectranthus amboinicus	Karpuravalli	Lamiaceae
22	Rauvolfia tetraphylla	Pampukaalaachchedi	Apocyanaceae
23	Solanum trilobatum	Tuduvalai	Solanaceae
24	Santalum album	Sandal wood;	Santalaceae
25	Strychnos nox-vomica	Etti Maram	Loganiaceae
26	Tinospora cornifolia	Kunali	Menispermaceae
27	Withania somnifera	Ashwagandha; Amukkuram	Solanaceae
28	Aloe vera	Kathalai	Asphodelaceae
29	Andrographis paniculata	Nilavembu	Acanthaceae
30	Curcuma longa	Manjal; Turmeric	Zingiberaceae
31	Tridax procumbens	Vettukkaya thalai	Asteraceae
32	Chrysopogon zizanioides	Vetiver	Poaceae
33	Costus igneus	Insulin plant; Neyccarikamaram	Costaceae
34	Syzygium cumini	Naval Maram; Jamun	Myrtaceae
35	Terminalia bellerica	Thandri Maram	Combretaceae
36	Terminalia chebula	Kadukkai Maram	Combretaceae

Collection of Samples

Roots and rhizosphere soil samples were collected under the root zone of all the 36 different medicinal plants of the selected study site in Kanyakumari district, Tamil Nadu in clean zip lock polythene covers, sealed tightly and immediately transported to Botany Laboratory, S.T. Hindu College, Nagercoil. The samples were kept in refrigerator at 4°C until further use.

Estimation of physico-chemical parameters of soil samples

Soil samples were analyzed for their physico-chemical parameters such as pH, Electrical Conductivity (EC), available Nitrogen (N), Phosphorus (P), Pottassium (K) and micronutrients such as Copper (Cu), Zinc (Zn), Magnesium (Mg) and Manganese (Mn) following standard laboratory methods.

Enumeration of total rhizosphere micro flora

Rhizosphere micro flora were isolated and estimated from the samples of selected medicinal plants by spread plate technique. Jensen's medium, Pikovskaya's agar medium, Rojo Congo medium for bacteria, starch casein agar media for Actinomycetes and potato dextrose agar for fungi were used and the plates were incubated at 37°C. Colony forming units (CFU/g) were calculated after 24 h for bacteria, and 72 to 96 h for fungi and actinomycetes. Morphologically different colonies were picked and streaked on to the respective medium to obtain pure culture and they were stored at -20°C for further analysis (Subba Rao, 1995).

Isolation of Actinomycetes from collected samples

Serial dilution of soil samples was made using sterile distilled water. The soil suspensions were plated using Starch Casein Agar (SCA) medium supplemented with 100μ g/ml cycloheximide. Then the plates incubated at 30°C for 7-10 days. Emerging Actinomycetes were picked and streaked onto fresh SCA plates and incubated at 30°C for 7 days. Pure cultures of the Actinomycetes isolates were maintained in SCA slants and stored at refrigerator.

Isolation of PGPRs from rhizosphere soil sample

Serial dilution and plating techniques as described by Parkinson *et al.* (1971) and Subba Rao (1993) were adopted for enumerating the status of PGPR. Among different PGPRs, *Azotobacter* colonies were selected based on the appearance of mucoid, transparent, gummy colonies; *Azospirillum* colonies appeared as scarlet pink, round colonies and phosphate solubilising bacteria (PSB) were identified based on the halo zone formed around the colonies. Population density of PGPRs was also determined for each sample as CFU/g (Colony Forming Units/gm of soil) (Rodriguez, 1982; Subba Rao, 1993) and statistically analyzed using ANOVA by SPSS10.0 version. All the isolates of PGPR *viz., Azotobacter, Azospirillum* and phosphate solubilising bacteria were maintained in nutrient agar slants at 4°C for further studies.

Maintenance of PGPR cultures

All the isolates of PGPR *viz.*, *Azotobacter*, *Azospirillum* and Phosphate Solubilizing Bacteria were maintained in nutrient agar slants at 4°C (Cappuccino and Sherman, 1996) for further studies.

Determination of Indole Acetic Acid (IAA) Production by PGPR

An experiment was conducted to determine plant growth hormone production by different PGPR isolates by adapting the method described by (Bent *et al.*, 2001). The tubes containing nutrient broth with tryptophan (2mg/ml) was sterilised and inoculated with selected bacteria, after incubation, the culture broth was taken by 0.5ml and adding 1.5ml of sterile distilled water. To this 4 ml of freshly prepared Salkowasky's reagent (50 ml of 35% per chloric acid + 1ml of 0.5M Ferric chloric acid) was added. The tubes were incubated in dark for 30 minutes for the development of pink coloured complex. After 30 minutes, the absorbance was measured at 530nm. IAA concentration in the culture was determined by using a calibration curve of pure IAA as a standard.

Determination of Phosphate solubilization by PSBs

The microbes isolated from medicinal plant soil samples were retested by plate assay for phosphate solubilization in Pikovskaya's agar medium. The bacteria were sporting on the medium. The halo zone around the colony was presumptive conformation of phosphate solubilization and was measured after 7 days of incubation at $30^{\circ} \pm 1^{\circ}$. Halo size was calculated by subtracting colony diameter from the total halo zone. Solubilisation efficiency (SE) was calculated by the following formula as described by Sharma *et al.* (2007):

Growth diameter Solubilisation Efficiency (SE) = ------ x 100 Solubilisation diameter

Results and Discussion

The rhizosphere is a dynamic soil environment formed by living plant roots and their associated microflora. The beneficial microbes are utilized as bio-fertilizers or bio-inoculants. They not only improve plant growth but also maintain the soil fertility. Since these bio-resources represent a great diversity in chemical, physical and biological characteristics, their efficient use depend on, among others, identification of suitable type of bio-fertilizers or bio-inoculants. Towards these goals, an attempt was made to determine the diversity status of Plant Growth Promoting Rhizobacteria in association with the rhizosphere of 36 different medicinal plants, for selection of potential bio-inoculants based on their growth hormone production and phosphate solubilization efficiency for application in nursery and field.

Data on physico-chemical properties of soil samples collected from different medicinal plants in selected study locations at Kanyakumari is presented in Table 2. It was observed that the study location displayed slightly acidic to neutral pH. The electrical conductivity which represents total ion concentration was ranged of 0.23-0.41. The bulk density was found as 1.12–1.36 gm/cc. The available nitrogen was observed low to moderate and available phosphorus content was less as compared to potassium. In the present study, calcium and magnesium level was very low. Soil texture is found as sandy to sandy loam.

S.No.	Parameters	Soil samples collected under different
		medicinal plants
1	pH	5.01 to 6.63
2	EC (ds/m)	0.23 - 0.41
3	Bulk Density (gm/cc)	1.12 - 1.36
4	Organic Carbon (%)	0.77 - 2.13
5	Available Nitrogen (kg/ha)	84.6 - 176.4
6	Available Phosphorus (kg/ha)	19.9 - 46.7
7	Available potassium (kg/ha)	177.9 - 265.8
8	Calcium (Meq/100g)	4.9 - 9.6
9	Magnesium (Meq/100g)	5.3 - 6.5
10	DTPA-Cu (ppm)	0.30 - 0.63
11	DTPA-Zn (ppm)	0.45 - 1.02
12	DTPA-Mn (ppm)	0.53 – 1.53
13	DTPA-Fe (ppm)	0.75 - 2.21
14	Texture	Sandy to Sandy loam

Table 2.Physico-chemical properties of rhizosphere soil samples of different
medicinal plants collected from Kanyakumari District, Tamil Nadu

Similar kind of results was reported in tropical soils characterized by low nutrient status according to Kang and Wilson (1987). Similarly, Ritsema and Dekker (1994) and Dekker and Ritsema (1996) have observed the variation in soil nutrient availability with space and time.

Enumeration of Rhizosphere Microorganisms

The population density of Plant Growth Promoting Bacteria (PGPR), Fungi and Actinomycetes was counted and calculated using colony forming units (CFU) (Tables 3a and 3b). A total of 1,718 colonies of different microbes were obtained from the rhizosphere soil samples of 36 different medicinal plants during the period of investigation. Of which, 1,229 colonies were PGPR organisms (Azotobacter, Azospirillum and Phosphobacteria), 270 colonies were Actinomycetes and 219 colonies of soil Fungi. The population densities of rhizobacterial (PGPR) colonies were observed to be high. Among PGPR colonies, maximum PGPR population was recorded from the rhizosphere of *Ocimum sanctum* (62 x 10^4 cfu/g soil), which is followed by Santalum album (57 x 10^4 cfu/g soil), Kalanchoe pinnata (54 x 10^4 cfu/g soil) and *Gmelina arborea* (52 x 10^4 cfu/g soil), Less population of different PGPR colonies was recorded from the rhizosphere of Gymnema sylvestre (6 x 10^4 cfu/g soil), Cichorium intibus and Tinospora cornifolia (7 x 10^4 cfu/g soil) each and Strictus nux-vomica $(8 \times 10^4 \text{ cfu/g soil})$. Population of Actinomycetes colonies was found more from Cemtella asiatica (18 x 10^4 cfu/g soil), followed by Ocimum sanctium (17 x 10^4 cfu/g soil), Acorus calamus and Plectranthus amboinicus (16 X 10⁴ cfu/g soil) each and Gmelina arborea (15 x 10^4 cfu/g soil). Less population of Actinomycetes was recorded from the rhizosphere of Oxalis corniculta (2 x 10^4 cfu/g soil), followed by Aegle marmelos, Limonia elephantum, Tinospora cornifolia, Costeus igneus and Terminalia bellerica (3 x 10^4 cfu/g soil) each. No

Actiomycete population was recorded from the rhizosphere samples of *Aristolochia bracteata*, *Hygrophylla auriculata* and *Phyllanthus emblica* during the period of study. There is a variation in population density of soil fungi from the rhizosphere of 36 different medicinal plants screened.

S.No.	Medicinal Plants	PGPR	Actinomycetes	Fungi
		(CFU/g of	(CFU/g of	(CFU/g of
		soil)*	soil)*	soil)*
1	Acorus calamus	47c	16c	14b
2	Adathoda vasica	39c	9a	ба
3	Aegle marmelos	12a	3a	8a
4	Aristolochia bracteata	23b		7a
5	Azadirachta indica	30b	12b	10b
6	Centella asiatica	44c	18c	5a
7	Cichorium intibus	7a	ба	7a
8	Eclipta prostrata	30b	9a	3a
9	Gmelina arborea	52d	15c	11b
10	Gymnema sylvestre	ба	7a	4a
11	Hemidesmus indicus	38b	8a	2a
12	Hibiscua rosa-sinensis	49c	14b	3a
13	Hygrophylla auriculata	19a		9a
14	Kalanchoe pinnata	54c	7a	5a
15	Limonia elephantum	33b	3a	4a
16	Ocimum basilicum	44c	ба	2a
17	Ocimum sanctum	62d	17c	8a
18	Oxalis corniculata	26c	2a	ба
19	Phyllanthus emblica	17a		5a
20	Phyla nodiflora	29b	6a	3a
	Total	661	158	122

Table 3a.Population density of different soil microbes from the rhizosphere soil
samples of different medicinal plants

*Means, in a column, followed by common letter (s) are not significantly different at 0.05 level according to DMRT.

Table 3b.Population density of different soil microbes from the rhizosphere soil
Samples of different medicinal plants

S.No.	Medicinal Plants	PGPR (CFU/g of soil)*	Actinomycetes (CFU/g of soil)*	Fungi (CFU/g of soil)*
21	Plectranthus amboinicus	49d	16c	5a
22	Rauvolfia tetraphylla	28b	5a	3a
23	Solanum trilobatum	30b	4a	9b

24	Santalum album	57d	10b	6a
25	Strychnos nox-vomica	8a	7a	10b
26	Tinospora cornifolia	7a	3a	2a
27	Withania somnifera	46d	5a	11b
28	Aloe vera	41d	10b	3a
29	Andrographis paniculata	47d	ба	5a
30	Curcuma longa	29b	11b	7a
31	Solanum procumbens	37c	8a	ба
32	Chrysopogon zizanioides	27b	5a	9b
33	Costus igneus	21b	3a	ба
34	Syzygium cumini	43d	10b	4a
35	Terminalia bellerica	50d	3a	2a
36	Terminalia chebula	48d	ба	9b
	Total	568	112	97
Total	population density of 20 (twenty)	661	158	122
differe	ent medicinal plants (as per Table			
3a)				
	Grand Total	1229	270	219
(Total	population density of all 36			
differ	ent medicinal plants)			

*Means, in a column, followed by common letter (s) are not significantly different at 0.05 level according to DMRT

Population density status of Plant Growth Promoting Rhizobacteria from the rhizosphere of different medicinal plants

The population density of different Plant Growth Promoting Bacteria (PGPR) organisms such as *Azotobacter, Azospirillum* and Phosphobacteria from the rhizosphere of 36 different medicinal plants was estimated and the data is presented in **Tables 4a and 4b**.

Table 4a.Population density status of Plant Growth Promoting Rhizobacteria(PGPR) from the rhizosphere soil samples of different medicinal plants

S.	Medicinal Plant Name	Populati	Population density of PGPR organisms*		
No.		Azotobacter	Azospirillum	Phosphobacterium	colonies
					(CFU/g)
1	Acorus calamus	12b	18c	17c	47
2	Adathoda vasica	5a	19c	15c	39
3	Aegle marmelos	2a	5a	5a	12
4	Aristolochia bracteata	3a	9a	11b	23
5	Azadirachta indica	4a	10b	16c	30
6	Centella asiatica	7a	18c	19c	44
7	Cichorium intibus	2a	2a	3a	7
8	Eclipta prostrata	ба	10b	14b	30

9	Gmelina arborea	12b	18c	22d	52
10	Gymnema sylvestre	1	3a	2a	6
11	Hemidesmus indicus	10b	16c	12b	38
12	Hibiscua rosa-sinensis	18c	12b	19c	49
13	Hygrophylla auriculata	4a	8	7	19
14	Kalanchoe pinnata	12b	19c	23d	54
15	Limonia elephantum	8a	11b	14b	33
16	Ocimum basilicum	15c	19c	10b	44
17	Ocimum sanctum	19c	18c	25d	62
18	Oxalis corniculata	7a	10b	9a	26
19	Phyllanthus emblica	4a	7a	ба	17
20	Phyla nodiflora	9a	12b	8a	29
	Total	160	244	257	661

*Means, in a column, followed by common letter (s) are not significantly different at 0.05 level according to DMRT

Table 4b.	Population density status of Plant Growth Promoting Rhizobacteria
	(PGPR) from the rhizosphere soil samples of different medicinal plants

S.	Medicinal Plant Name	Рорг	Population of PGPR organisms*		
No.		Azotobacter	Azospirillum	Phosphobacterium	colonies
					(CFU/g)
21	Plectranthus amboinicus	9a	18c	22d	49
22	Rauvolfia tetraphylla	9a	10b	9a	28
23	Solanum trilobatum	7a	9a	14b	30
24	Santalum album	11b	19c	27d	57
25	Strychnos nox-vomica	3a	3a	2a	8
26	Tinospora cornifolia	2a	2a	3a	7
27	Withania somnifera	9a	15c	22d	46
28	Aloe vera	8a	14b	19c	41
29	Andrographis paniculata	7a	18c	22d	47
30	Curcuma longa	4a	13b	12b	29
31	Solanum procumbens	11b	14b	12b	37
32	Chrysopogon zizanioides	4a	10b	13b	27
33	Costus igneus	5a	7a	9a	21
34	Syzygium cumini	9a	18c	16c	43
35	Terminalia bellerica	11b	18c	21d	50
36	Terminalia chebula	12b	16c	20d	48
	Total	121	204	243	568
Total]	population density of 20	160	244	257	661
differe	nt medicinal plants (as per				
Table 4	4)				
	Grand Total	281	448	500	1229

Volume 9, Issue 6, 2019

(Total population density of 36		
(thirty six) different medicinal		
plants)		

*Means, in a column, followed by common letter (s) are not significantly different at 0.05 level according to DMRT

It was observed that population density of Phosphobacteria was found maximum (500 x 10^4 cfu/g soil) and this is followed by *Azospirillum* colonies (448 x 10^4 cfu/g soil) and *Azotobacter* colonies (281 x 10^4 cfu/g soil). It was also found that maximum Phosphobacteria colonies was recorded from the rhizosphere of *Santalum album* (27 x 10^4 cfu/g soil), followed by *Ocimum sanctium* (25 x 10^4 cfu/g soil), *Kalanchoe pinnata* (23 x 10^4 cfu/g soil) and *Gmelina arborea, Plectranthus amboinicus, Withania somnifera* and *Andrographis paniculata* (22 x 10^4 cfu/g soil) each. Less population of Phosphobacteria was recorded from the rhizosphere of Strictus nux-vomica (2 x 10^4 cfu/g soil), followed by Tinospora cornifolia (3 x 10^4 cfu/g soil).

Maximum Azospirillum colonies was recorded from the rhizosphere of Adathoda vasica, Kalanchoe pinnata, Ocimum basilicum and Santalum album (19 x 10^4 cfu/g soil) each, followed by Acorus calamus, Centella asiatica, Gmelina arborea, Ocimum sanctum, Plectranthus amboinicus, Andrographis paniculata, Syzygium cumini and Terminalia bellerica (18 x 10^4 cfu/g soil) each respectively. Less population of Azospirillum was recorded from the rhizosphere of Tinospora cornifolia (2 x 10^4 cfu/g soil), followed by Strictus nux-vomica (3 x 10^4 cfu/g soil) during the period of study.

Maximum Azotobacter colonies was recorded from the rhizosphere of Ocimum sanctum (19 x 10^4 cfu/g soil), followed by Hibiscus rosa-sinensis (18 x 10^4 cfu/g soil) and Gmelina arborea (17 x 10^4 cfu/g soil). Less Azotobacter colonies was recorded from the rhizosphere of Gymnema sylvestre (1 x 10^4 cfu/g soil), followed by Aegle marmelos, Cichorium intibus and Tinospora cornifolia (2 x 10^4 cfu/g soil) each and Strictus nux-vomica and Aristolochia bracteata (3 x 10^4 cfu/g soil) during the study period.

In vitro screening of different isolates of PGPR for Indole acetic acid production

An experiment was conducted to determine the efficacy of plant growth hormone production by selected 4 different isolates of PGPR under *in vitro* and data is presented in **Table 5.** It was found that all the selected isolates are able to produce IAA production but there is a variation in quantity of production by different isolates. It was recorded that the isolate Nos. 27 and 45 showed maximum amount of IAA production as compared to other isolates.

S.No.	Isolation code	IAA production
		(µg/ml)
1	1	0.00922
2	6	0.01055
3	9	0.00657
4	10	0.01123
5	15	0.00212

6	27	0.03791
7	45	0.09292
8	55	0.00113
9	57	0.02112
10	60	0.00201

In vitro screening of different isolates of PGPR for phosphate solubilisation

All the selected phosphobacterial isolates were screened for their phosphate solubilisation efficiency using Pikovskaya's agar medium supplemented with calcium phosphate in laboratory. The colony and zone size of different isolates is shown in **Table 6.** It was observed that all the isolates revealed high "P" solubilisation efficiency. Maximum phosphate solubilisation efficiency was observed for isolate Nos. 27, 45 of different samples screened.

S.	Isolation code	Colony size (mm)	Zone size (mm)	Result (mm)
No.				
1	10	17	Nil	Nil
2	11	14	Nil	Nil
3	12	18	Nil	Nil
4	14	13	Nil	Nil
5	15	15	Nil	Nil
6	16	11	Nil	Nil
7	18	19	Nil	Nil
8	19	13	Nil	Nil
9	20	15	Nil	Nil
10	22	13	Nil	Nil
11	27	6	35	83.3
12	45	3	17	66.6
13	46	18	Nil	Nil
14	50	16	Nil	Nil
15	52	11	Nil	Nil
16	53	14	Nil	Nil
17	55	18	Nil	Nil
18	57	12	Nil	Nil
19	60	19	Nil	Nil
20	63	13	Nil	Nil

Table 6. Phosphate Solubilisation efficiency from PGPR isolates

The findings of the study are corroborated with the findings made by Joseph *et al.* (2007) and Farah *et al.* (2008). Their study also showed the potential of such PGPR isolates in their plant growth promoting traits like production of Indole Acetic Acid (IAA), Ammonia (NH3), Hydrogen Cyanide (HCN), siderophore and catalase.

CONCLUSION

All the PGPR isolates isolated from the rhizosphere of 36 different medicinal plants were screened for the IAA production and phosphate solubilisation efficacy under *in vitro* condition and some of the isolates revealed excellent performance. Those isolates were pure cultured and maintained for further screening their bio-control ability and nursery application to different medicinal plants for quality plants production.

References

Bashan Y. 1(998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv., 16:729-770.

Bent E., Tuzun S., Chanway C.P. and Enebak S. (2001). Alterations in plant growth and in root hormone levels of lodge pole pines inoculated with rhizobacteria. Canadian Journal Microbiology, **47**: 793-800.

Cappuccino, J. G. and Sherman, N., 1996, Microbiology: A laboratory Manual. The Benjamin Cummings Publishing Company, Inc., California.

Dekker L.W. and Ritsema C.J. (1996). Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. Catena, 28: 89-105.

Farah A., Iqbal A. and Khan M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163: 173-181.

Joseph B., Ranjan P.R. and Lawrence R. (2007). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicerarietinum L.). International Journal of Plant Production, **1**(2):141-151.

Kang B.T. and Willson G.F. (1987). The development of alley forming as a promising agroforestry technology. In: Agroforestry A decade of development.(H. A. Steppler and P. K. R. Nair. eds.) ICRF Nairobi - Kenya. pp: 227-243.

Parkinson D.J., Gray R. and Williams S.T. (1971). Methods of studying the ecology of soil micro-organisms. Oxford, Blackwell Scientific publications. pp. 116.

Ritsema C.J. and Dekker L.W. (1994). How water moves in a water repellent sandy soil 2.Dynamics of fingered flow. Water Resour. Res., **30**: 2519-2531.

Rodriguez-caceras A. (1982). Improved medium for isolation of Azospirillum sp. AEM 44 (4): 990-991.

Sharma K., Dak G., Agrawal A., Bhatnagar M. and Sharma R. (2007). Effect of phosphatesolubilizing bacteria on the germination of Cicerarietinum seeds and seedling growth. Journal of Herbal Medicine and Toxicology, 1(1): 61-63.

Subba Rao N.S. (1993). Bio-fertilizers in Agriculture and Forestry, 3rd edition. Oxford & IBH publishing Co. Pvt. Ltd, New Delhi. pp. 69-131.

Subba Rao, N.S. (1995). Soil Microorganisms and Plant Growth. Oxford and IBH, Publishing Co. Pvt. Ltd, New Delhi.

Yang J., Joseph W.K. and Choong-Min R. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci., **14**(1): 1-4