Various Graph Labeling Techniques on H-Graph
Srushti Gandhi1, Dharamvirsinh Parmar2,*
1M.Phil. Scholar at Department of Mathematics, C.U. Shah University, Wadhwan, India
2Assistant Professor at Department of Mathematics, C.U. Shah University, Wadhwan, India
1gandhi.srushti@gmail.com, 2dharamvir_21@yahoo.co.in

Abstract

The H-Graph of path P_n is the graph obtained from two copies of path P_n with the vertices $v_1, v_2, v_3, v_4, \ldots, v_n$ and $u_1, u_2, u_3, u_4, \ldots, u_n$ by joining the vertices v_{n+1} and u_{n+1} if n is odd and $v_{\frac{n+1}{2}}$ and $u_{\frac{n}{2}}$ if n is even. In this paper we discuss square sum labeling, mean labeling, prime labeling, sum labelling and sum perfect square labeling of H-Graph.

Keywords: H-graph, Mean labeling, Prime labeling, Square sum labeling, Sum perfect square labeling.

1. INTRODUCTION

We consider a finite, connected and undirected graph without loops. Graph $G = (V, E)$ having set of vertices $V(G)$ and set of edges $E(G)$ respectively. Labeling of a graph G is an assignment of integers either to the vertices or edges or both subject to certain conditions. For detailed survey on graph labeling we refer to the dynamic survey of graph labeling by J.A. Gallian.

Definition 1.1 The H-graph of path P_n is the graph obtained from two copies of P_n with the vertices $v_1, v_2, v_3, v_4, \ldots, v_n$ and $u_1, u_2, u_3, u_4, \ldots, u_n$ by joining the vertices v_{n+1} and u_{n+1} if n is odd and $v_{\frac{n+1}{2}}$ and $u_{\frac{n}{2}}$ if n is even.

Definition 1.2 Let $G = (V, E)$ be a graph with p vertices and q edges. A bijection map $f : V \to \{0, 1, 2, 3, \ldots, p - 1\}$ is called sum perfect square labeling of G, if the induced edge function $f^* : E \to \mathbb{N}$ defined by $f^*(uv) = [(f(u) + f(v))^2]$ for all edges uv is injective. A graph which admits sum perfect square labeling is called sum perfect square graph.

Definition 1.3 Let $G = (V, E)$ be a graph with p vertices and q edges. A injective map $f : V \to \{0, 1, 2, 3, \ldots, q\}$ is called mean labeling if the induced edge function $f^* : E \to \mathbb{N}$ defined by

$$f^*(e = uv) = \begin{cases} \frac{f(u) + f(v)}{2}, & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2}, & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$
A graph that admits mean labeling is called mean labeling graph.

Definition: Let \(G = (V, E) \) be a graph with \(p \) vertices and \(q \) edges. An injective map \(f: V \rightarrow \{1, 2, 3, ..., |V|\} \) is called prime labeling of graph \(G \) if for every pair of adjacent vertices \(u \) and \(v \), \(gcd(f(u), f(v)) = 1 \). A graph which admits prime labeling is called prime labeling graph.

Definition: Let \(G = (V, E) \) be a graph with \(p \) vertices and \(q \) edges. A bijective map \(f: V \rightarrow \{0, 1, 2, 3, ..., p-1\} \) is said to be square sum labeling of graph \(G \), if the induced edge function \(f^*: E \rightarrow \mathbb{N} \) defined by \(f^*(uv) = f(u)^2 + f(v)^2 \), for every \(uv \in E(G) \) is injective. The graph that admits prime labeling is called prime labeling graph.

2. Main Results

Theorem 2.1: H-graph is sum perfect square labeling.

Proof: Let \(G \) be a H-graph; \(\{u_i, v_i/1 \leq i \leq n\} \) be the set of vertices and \(p = |V| = 2n \) and \(q = |E| = 2n - 1 \).

Define: \(f: V \rightarrow \{0, 1, 2, 3, ..., 2n - 1\} \) by:

For \(1 \leq i \leq n \);
\[
 f(u_i) = i - 1 \\
 f(v_i) = n + i - 1
\]

Which is bijective function.

Then the induced edge labels are:
\[
 f^*(u_iu_{i+1}) = (2i - 1)^2 \\
 f^*(v_iv_{i+1}) = (2n + 2i - 1)^2 \\
 f^*(u_{n+1}v_{n+1}) = (2n - 1)^2; \quad \text{if } n \text{ is odd} \\
 f^*(u_{2+1}v_n) = (2n - 1)^2; \quad \text{if } n \text{ is even.}
\]

Which is injective function. Hence H-graph is perfect square sum labeling.
Example 2.2 Square sum labeling of H-graph for $n = 3$ and $n = 4$.

\[\text{Figure 1(a) for } n = 3 \quad \text{Figure 1(b) for } n = 4. \]

Figure 1. Perfect Square Sum labeling of H – graph with $n = 3$ and $n = 4$ vertices

Theorem 2.3: H-graph is mean labeling.

Proof: Let G be a H-graph; \{u_i, v_i/1 ≤ i ≤ n\} be the set of vertices and $p = |V| = 2n$ and $q = |E| = 2n - 1$.

Define a function $f: V \rightarrow \{0,1,2,3,...,2n - 1\}$ by

For $1 ≤ i ≤ n$;

$f(u_i) = i - 1$

$f(v_i) = n + i - 1$

which is injective function.

Then the induced edge labels are:

$f^*(u_iu_{i+1}) = i \quad 1 ≤ i < n$

$f^*(v_iv_{i+1}) = n + i; \quad 1 ≤ i < n$

$f^*(u_{n+1}v_{n+1}) = n; \quad \text{if } n \text{ is odd}$

$f^*(u_{\frac{n+1}{2}}v_{\frac{n+1}{2}}) = n; \quad \text{if } n \text{ is even.}$

Which is injective function. Hence H-graph is mean labeling.
Example 2.4: Mean labeling of H-graph for $n = 5$ and $n = 6$.

Figure 2(a): For $n = 5$.

Figure 2(b): For $n = 6$.

Figure 2. Mean labeling of H – graph with $n = 5$ and $n = 6$ vertices

Theorem 2.5: H-graph is prime labeling.

Proof: Let G be a H-graph; $\{u_i, v_i/1 \leq i \leq n\}$ be the set of vertices and $p = |V| = 2n$.

Define a function $f: V \to \{1, 2, 3, ..., 2n\}$ by

Case: 1 If $n \in \mathbb{N} \setminus \{4^i/i \in \mathbb{N}\}$

$f(u_i) = i$; $1 \leq i \leq n$

$f(v_i) = n + i$; $1 \leq i \leq n$

Which is injective function.

Case: 2 If $n \in \{4^i/i \in \mathbb{N}\}$

$f(u_i) = i$; $1 \leq i \leq n$

$f(v_i) = n + i + 1$; $1 \leq i \leq n$

$f(v_{\frac{n}{2}}) = n + 1$; $1 \leq i \leq n; i \neq \frac{n}{2}$

Which is injective function.

Hence, H-graph is prime labeling.
Example 2.6: Prime labeling of H-graph for \(n = 9 \) and \(n = 16 \).

Figure 3(a): For \(n = 9 \).

Figure 3(b): For \(n = 16 \).

Theorem 2.7: H-graph is square sum labeling.

Proof: Let \(G \) be a H-graph; \(\{ u_i, v_i \mid 1 \leq i \leq n \} \) be the set of vertices and \(p = |V| = 2n \) and \(q = |E| = 2n - 1 \).

Define a function \(f: V \rightarrow \{0, 1, 2, ..., 2n - 1\} \) by

For \(1 \leq i \leq n \);

\[
f(u_i) = (i - 1)
\]

\[
f(v_i) = 2i - 1
\]

Then the induced edge labels are:

\[
f^*(u_iu_{i+1}) = 8i^2 - 8i + 4 \quad 1 \leq i \leq n
\]

\[
f^*(v_iv_{i+1}) = 8i^2 + 2 \quad 1 \leq i \leq n
\]

\[
f^*(\frac{u_{n+1}v_{n+1}}{2}) = (2n^2 - 2n + 1) \quad \text{if } n \text{ is odd}
\]

\[
f^*(\frac{u_{n+1}v_n}{2}) = (2n^2 - 2n + 1) \quad \text{if } n \text{ is even.}
\]
Which is injective.

Hence, H-graph is square sum labeling.

Example 2.8: Square sum labeling of H-graph for $n = 8$ and $n = 11$.

![Figure 4(a) For $n = 8$](image1)

![Figure 4(b) For $n = 11$](image2)

Figure 4. Mean labeling of H-graph with $n = 8$ and $n = 11$ vertices

3. Conclusion

In this paper we have proved that H-graph are square sum labeling, sum perfect square labeling, prime labeling and mean labeling.
References

