Regularity Concept of L-Fuzzy Bi-Ideals in Near-Ring

KE.Sathappan¹, R.Sumathi*²

¹. Asst. Professor, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi, Tamilnadu, India - 630 003. E-mail: kesathappan@gmail.com
². *Asst. Professor, Department of Mathematics, SNS College of Technology, Coimbatore, Tamilnadu, India – 641 035. E-mail: sumathiramanathan87@gmail.com

Abstract:
In this paper, we apply the idea of near ring. We introduce the notion of L-fuzzy bi-ideal in near-ring. Also we give conditions for a near ring with unity to be strongly regular in terms of fuzzy set.

Keywords: Near-ring, bi-ideals, fuzzy bi-ideals, L-fuzzy bi-ideals.

1. Introduction

2. Preliminaries

For the sake of continuity we recall some basic definitions.

2.1 Definition:
A non empty set N with two binary operations ‘+’ and ‘.’ is called a near-ring if
(i) (N,+) is a group.
(ii) (N,.) is a semigroup
(iii) x.(y+z) = x.y + x.z for all x, y, z ∈ N

Example:
Let N = { p, q, r, s} be a set with two binary operations as follows:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>q</td>
<td>q</td>
<td>p</td>
<td>s</td>
<td>r</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>s</td>
<td>q</td>
<td>p</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>r</td>
<td>p</td>
<td>q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>q</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>P</td>
</tr>
<tr>
<td>r</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>P</td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>q</td>
<td>q</td>
</tr>
</tbody>
</table>

(N,+,.) is a near-ring.
2.2 Definition:
A fuzzy set μ_A in a near ring N is called a fuzzy ideal of N if it satisfies:

(i) $\mu_A(x - y) \geq \min \{ \mu_A(x), \mu_A(y) \}$
(ii) $\mu_A(y + x - y) \geq \mu_A(x)$
(iii) $\mu_A(xy) \geq \mu_A(y)$
(iv) $\mu_A((x + z)y - xy) \geq \mu_A(z)$ for all $x, y, z \in N$

2.3 Definition:
A fuzzy set μ_A in N is a fuzzy bi ideal of N if

(i) $\mu_A(x - y) \geq \min \{ \mu_A(x), \mu_A(y) \}$ for all $x, y \in N$
(ii) $\mu_A(x y z) \geq \min \{ \mu_A(x), \mu_A(y) \}$ for all $x, y, z \in N$

2.4 Definition:
A fuzzy set μ_A in N is a fuzzy sub near-ring of N if,

(i) $\mu_A(x - y) \geq \min \{ \mu_A(x), \mu_A(y) \}$
(ii) $\mu_A(x y) \geq \min \{ \mu_A(x), \mu_A(y) \}$ for all $x, y \in N$

2.5 Definition:
A fuzzy set μ_A in a set N is a function $\mu_A : N \rightarrow [0, 1]$. Denote by $\text{Im}(\mu_A)$ the image set of μ_A. For $t \in [0, 1]$ the set $\mu_A^{-t} = \{ x \in N / \mu_A(x) \geq t \}$ (rep. $\mu_A^{-t} = \{ x \in N / \mu_A(x) \leq t \}$) is called a upper (resp. lower) t-level cut of μ_A.

3. MAIN RESULTS

3.1 Definition:
A fuzzy set μ_A in N is a L-fuzzy sub near-ring of N if for all $x, y \in N$,

(i) $\mu_A(x - y) \geq \mu_A(x) \wedge \mu_A(y)$
(ii) $\mu_A(x y) \geq \mu_A(x) \wedge \mu_A(y)$

3.2 Definition:
A fuzzy set μ_A in N is a L-fuzzy bi-ideal of N if for all $x, y, z \in N$,

(i) $\mu_A(x - y) \geq \mu_A(x) \wedge \mu_A(y)$
(ii) $\mu_A(x y z) \geq \mu_A(x) \wedge \mu_A(z)$

Example:
Consider the fuzzy subset μ_A of R defined by,

$$\mu_A(x) = \begin{cases} 0.6 & \text{if } x \in \langle 2 \rangle \\ 0.2 & \text{otherwise} \end{cases}$$

Then μ_A is L-fuzzy bi-ideal of N.

3.3 Theorem:
A fuzzy set μ_A in N is an L-fuzzy bi-ideal of N iff μ_A^c is an L-fuzzy bi-ideal of N.

Proof:
If μ_A is an L-fuzzy bi-ideal of N.

To prove:
μ_A^c is an L-fuzzy bi-ideal of N. μ_A^c is a L-fuzzy bi-ideal of N.

\[\mu_A^C(x - y) = 1 - \mu_A(x - y) \]
\[\geq 1 - (\mu_A(x) \wedge \mu_A(y)) \]
\[\geq (1 - \mu_A(x)) \wedge (1 - \mu_A(y)) \]
\[= \mu_A^C(x) \wedge \mu_A^C(y) \]

Therefore, \(\mu_A^C(x - y) \geq \mu_A(x) \wedge \mu_A^C(y) \) for all \(x, y \in N \)

\[\mu_A^C(x \ y \ z) = 1 - \mu_A(x \ y \ z) \]
\[\geq 1 - (\mu_A(x) \wedge \mu_A(z)) \]
\[\geq (1 - \mu_A(x)) \wedge (1 - \mu_A(z)) \]
\[= \mu_A^C(x) \wedge \mu_A^C(z) \]

Therefore, \(\mu_A^C(x \ y \ z) \geq \mu_A(x) \wedge \mu_A^C(z) \) for all \(x, y, z \in N \)

\(\mu_A^C \) is an \(L \)-fuzzy bi-ideal of \(N \).

Conversely, \(\mu_A^C \) is an \(L \)-fuzzy bi-ideal of \(N \), then clearly the condition (i) and (ii) of Definition 3.2 are valid.

3.4 Theorem:

A fuzzy set \(\mu_A \) in \(N \) is a \(L \)-fuzzy bi-ideal of \(N \) if and only if all the non-empty sets \(\mu_i^+ \) and \(\mu_i^- \) are bi-ideal of \(N \) for all \(t \in \text{Im}(\mu_A) \)

Proof:

Suppose that \(\mu_A \) is an \(L \)-fuzzy bi-ideal of \(N \).

For \(x, y \in \mu_i^+ \), we have

\[\mu_A(x - y) \geq \mu_A(x) \wedge \mu_A(y) \]
\[\geq t \]

Therefore, \(x - y \in \mu_i^+ \)

Let \(x, z \in \mu_i^+ \) and \(y \in N \). Then

\[\mu_A(x \ y \ z) \geq \mu_A(x) \wedge \mu_A(z) \]
\[\geq t \]

And so \(x \ y \ z \in \mu_i^+ \)

Hence \(\mu_i^+ \) is an \(L \)-fuzzy bi-ideal of \(N \) for all \(t \in \text{Im}(\mu_A) \) also \(\mu_i^- \) are \(L \)-fuzzy bi-ideal of \(N \) for all \(t \in \text{Im}(\mu_A) \)

Conversely,

Suppose that \(\mu_i^+ \) and \(\mu_i^- \) are bi-ideals of \(N \) for all \(t \in \text{Im}(\mu_A) \)

Suppose that \(x, y \in N \)

\[\mu_A(x - y) \leq \mu_A(x) \wedge \mu_A(y) \]

Choose \(r \), such that \(\mu_A(x - y) < r < \mu_A(x) \wedge \mu_A(y) \) Then we get \(x, y \in \mu_i^+ \) but \(x - y \notin \mu_i^+ \) a contradiction. Therefore

\[\mu_A(x - y) \geq \mu_A(x) \wedge \mu_A(y) \]

Similarly \(\mu_A(x \ y \ z) \geq \mu_A(x) \wedge \mu_A(z) \) for all \(x, y, z \in N \)

Hence \(\mu_A \) is \(L \)-fuzzy bi-ideal of \(N \).

3.5 Theorem:

A non-empty set \(B \) of \(N \) is a bi-ideal of \(N \) if and only if \(A = (\mathcal{X}_B, \mathcal{X}_B^C) \) is an \(L \)-fuzzy bi-ideal of \(N \).

Proof:

Straightforward
4. L-FUZZY BI-IDEALS AND REGULARITY

A near-ring N is regular if for every $a \in N$ there is an $x \in N$ such that $a = axa$.

A near ring N is strongly regular if for every $a \in N$ there is an $x \in N$ such that $a = xaa$.

4.1 Theorem:

Every L-fuzzy bi-ideal in a regular near ring is a L-fuzzy sub near-ring of N.

Proof:

Let μ_a be a L-fuzzy bi-ideal of N and Let $a, b \in N$.

Since N is regular, there exist $x \in N$ such that $a = axa$.

Then $\mu_a(ab) = \mu_a((axa)b)$

$= \mu_a(a(xa)b)$

$\geq \mu_a(a) \wedge \mu_a(b)$

$\therefore \mu_a(ab) \geq \mu_a(a) \wedge \mu_a(b)$

Thus μ_a is a L-fuzzy sub near-ring of N.

4.2 Lemma:

Let N be a strongly regular near ring. If $a = xaa$ for some $a, x \in N$, then $a = axa$ and $ax = xaa$.

4.3 Theorem:

If N is strongly regular, then for each $a \in N$ there is some $y \in N$ such that $a = a^2 ya^2$.

Proof:

Since N is strongly regular for each $a \in N$ there is an $x \in N$ such that $a = xaa$.

Then by lemma 4.2

$a = axa$ and $ax = xaa$

$\therefore a = (ax) = a^2 x$ and hence,

$a = axa = (a^2 x)x(a^2 x)$

$= a^2 ya^2$.

4.4 Theorem:

Let N be a strongly regular near ring. Then for every L-fuzzy B-ideal in N, we have $\mu_a(x) = \mu_a(x^2)$ for all $x \in N$.

Proof:

Let μ_a be a L-fuzzy Bi-ideal of N and let $x \in N$ since N is strongly regular, there exist $y \in N$ such that $x = x^2 yx^2$ then,

$\mu_a(x) = \mu_a(x^2 yx^2)$

$\geq \mu_a(x^2) \wedge \mu_a(x^2)$

$= \mu_a(x^2)$.

4.5 Theorem:

Let N be a near-ring with identity 1 if every L-fuzzy Bi-ideal μ_a in N satisfies $\mu_a(x) = \mu_a(x^2)$ for all $x \in N$ then N is strongly regular.

Proof:

Suppose that every L-fuzzy Bi-ideal μ_a of N satisfies $\mu_a(x) = \mu_a(x^2)$ for all $x \in N$.

Let $a \in N$ then $B = Na^2$ is a Bi-ideal of N.

Volume 9, Issue 6, 2019

ISSN NO: 2249-2976

https://pramanaresearch.org/
\[A = (\mathcal{X}_B, \mathcal{X}_B^C) \] is an L-fuzzy Bi-ideal of N (by Theorem 3.5)

Since \(a^2 \in B = Na^2, \mathcal{X}_B(a^2) = 1 \).

But by hypothesis \(\mathcal{X}_B(a) = \mathcal{X}_B(a^2) \)

\[\therefore \mathcal{X}_B(a) = 1 \] and so \(a \in B = Na^2 \)

Thus \(a = xa^2 \) for some \(x \in N \).

Hence N is strongly regular.

Reference:

