A Review on Machine Learning

J.Sulthan Alikhan, Assistant Professor, CSE K.L.N College of Engineering

Dr. R. Alagesaran,Professor & Head, IT
K.L.N College of Engineering

ABSTRACT:

Machine Learning is one of the most important methods in today's research. It has become ubiquitous and one often encounters results of Machine Learning processes in daily life without even noticing. Machine learning is an integral part of artificial intelligence which is used to design algorithms based on the data trends and historical relationship between data. This paper try to cover all the important aspects of machine learning algorithms.

Key Words: Machine Learning Algorithms

Introduction

There are many technical and functional definitions for Machine learning and some of them are as follows:

A branch of artificial intelligence in which a computer generates rules underlying or based on raw data that has been fed into it [1]. Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or databases. [2]. Machine learning usually refers to the changes in systems that perform tasks associated with artificial intelligence (AI). Such tasks involve recognition, diagnosis, planning, robot control, prediction, etc.

Machine learning is used in **different domains** such as

- > security heuristics that distill attack patterns to protect, for instance, ports or networks;
- image analysis to identify distinct forms and shapes, such as for medical analyses or face and fingerprint recognition;
- > deep learning to generate rules for data analytics and big data handing, such as are used in marketing and sales promotions;

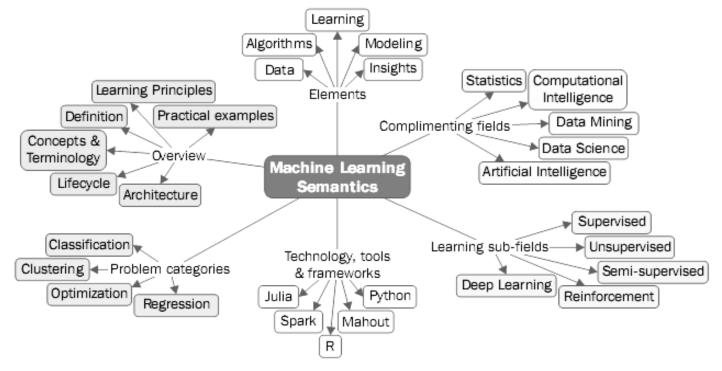
Machine learning is a powerful tool for gleaning knowledge from massive amounts of data. Machine learning typically contain **main three phases**:

- a. Training Phase
- b. Validation and Test Phase
- c. Application Phase

In the testing phase, the normal pattern is defined for detecting anomalies. In the training phase, the learned model is applied into new data and each pattern is classified into normal or anomalous.

Models

Models are central to any Machine learning implementation. A model describes data that is observed in a system. Models are the output of algorithms applied to a dataset, models are categorized as the following:

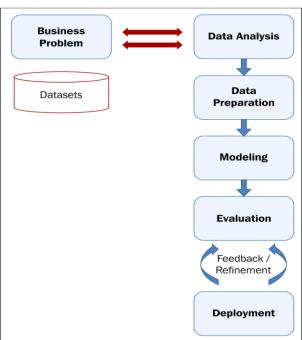

- Logical models
- Geometric models
- Probabilistic models

Types of Machine Learning

Machine Learning (ML) is divided into three subdomains [4]:

- supervised learning,
- unsupervised learning,
- reinforcement learning.

In 'supervised learning', the algorithm is fed a set of 'training' data that contains labels on some portion of the observations


Machine Learning Semantics

- > 'Unsupervised learning' refers to situations where the data provided to the algorithm does not contain labels.
- > 'Reinforcement learning' falls in between supervised and unsupervised learning

List of Common Machine Learning Algorithms:

- 1. Linear Regression
- 2. Logistic Regression
- 3. Decision Tree
- 4. SVM
- 5. Naive Bayes
- 6. kNN
- 7. K-Means
- 8. Random Forest
- 9. Dimensionality Reduction Algorithms
- 10. Gradient Boosting algorithms
 - 1. GBM
 - 2. XGBoost
 - 3. LightGBM
 - 4. CatBoost

Machine learning lifecycle process is to analyze the avail-able data of a given business problem, then the input data is prepared as training data that does not contain any errors with identified features and values in it.

Machine learning process lifecycle and solution architecture

Pramana Research Journal ISSN NO: 2249-2976

Algorithms	Algorithm s type	Algorithms characteristic	Learning policy	Learning algorithms	Classificatio n strategy
Decision tree	Discriminant	Classification tree	Regularized maximum likelihood estimation	Feature selection, generation, prune	IF-THEN rule According to tree spitting
Non-linear SVM (based on libsvm)	Discriminant	Super-plane separation, kernel trick	Minimizing regular hinge loss, soft margin maximization	Sequential minimal optimization algorithm (SMO)	Maximum class of test samples
Linear SVM (based on liblinear)	Discriminant	Super-plane separation	Minimizing the loss of regular hinge, soft margin maximization	Sequential dual method	Maximum Weighted test sample
Stochasti c gradient boosting	Discriminant	Linear combination of weak classifier (based on decision tree)	Addition minimization loss	Stochastic gradient descent algorithm	Linear combination of weighted maximum weak classifiers
Naive Bayesian classifier	Generative	Joint distribution of class and feature, conditional independent assumption	Estimation ofm aximum likelihood, Maximum post erior	Probabilistic computation	Maximum posterior probability

comparison of some machine learning algorithms

Essential Tools

The new generations tools are very smart, it breaks the traditional tools of operating in batch mode, New tools are used in real-time analytics, big data and deeper analytics.

Tools								
	Python	R	Spark	Matlab	TensorFlow			
License	Open	Open	Open Source	Proprietary	Open Source			
	Source	Source						
Distributed	No	No	Yes	No	No			
Visualization	Yes	Yes	No	Yes	No			
Neural nets	Yes	Yes	Multilayer	Yes	Yes			
			classifier					
Supported languages	Python	R	Scala,java	Matlab	Python &			
	-		-		C++			
Variety of machine	High	High	Medium	High	Low			
learning models		_		_				
Suitability as a	High	Medium	Medium	High	Low			
general purpose Tool								

Some popular machine-learning tools

Benefits of Machine Learning in the Cloud

- The cloud's use per pay model is good for AI or machine learning workloads.
- > The cloud with machine learning projects increases the production ondemand.
- Additional intelligence skills are not required while using Cloud with AI.
- ➤ AWS, Microsoft Azure, and Google Cloud Platform software are provide many machine learning algorithm.

REFERENCES:

- 1.https://www.dictionary.com/browse/machine-learning
- 2. https://sites.google.com/site/fsubiwiki/home/data-mining/machine-learning
- 3. Wernick, Yang, Brankov, Yourganov and Strother, Machine Learning in Medical Imaging, IEEE Signal

Processing Magazine, vol. 27, no. 4, July 2010, pp. 25-38

4. Data Mining: Concepts and Techniques, 2nd ed., Jiawei Han and Micheline Kamber, The Morgan

Kaufmann Series in Data Management Systems, Jim Gray, Series Editor, Morgan Kaufmann publishers, 2006, ISBN 1-55860-901-6